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Chapter 1

ORBITS AND REPRESENTATIONS

1. MOMENTUM MAP

Let (P, w) be a symplectic manifold. That is P is a smooth manifold and w
is a closed non-degenerate 2-form on P. For each function f on P, we denote
by Ef the Hamiltonian vector field of f defined by

Ef—‘ W= — df)
where ~' denotes the left interior product of forms by vector fields,

(- w,my=(w, EAM).

The map f— Ef induces the structure of a Lie algebra in the space of smooth
functions on P, called the Poisson algebra of (P, w). The Poisson bracket of f
and A is given by

[f,h] =—(w, Ef/\Eh)=—th =£hf-

We say that an action of a connected Lie group G in P is Hamiltonian if there
exists a G equivariant mapping J : P - g*, where g* is the dual of the Lie algebra
g of G, such that, for each £ in g, this action of exp (—¢£) in P is given by the
translation by ¢ along the integral curves of the Hamiltonian vector field of the
function J , on P defined by

J,@) =@, B

for every p in P. The map J is called a momentum map for the action of G in
(P, w), and the function J i is called a momentum associated to .

Examples

1. Consider P=R® with the canonical coordinates (p,,q’), i,j=1,2,3,
w=2Z;dp, A\ dq’, and G = SO(3). The action of G in P is given by the fundamen-
tal action of SO(3) on the variables g’, and its transpose on the variables p;-
The Lie algebra so (3) is 3-dimensional, and a momentum map gives the angular
mementum.

2. Let P=R2?" with the canonical coordinates (p;,q"), i,j=1,...,n, the
symplectic form as before, and G = Sp(n, R), the group of all linear transforma-
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tions preserving w. Components of a momentum mapping are quadratic homoge-
neous polynomials on P.

3. Let G be a connected Lie group, and P an orbit of the co-adjoint action of
G in g*. For each £ in g, let £, denote the fundamental vector field on P cor-
responding to £, that is the translation by ¢ along the integral curves of £, gives
the action of exp (¢£) in P. Since P is diffeomorphic to G/G e where p is any
point in P,and G » is the stability group of p, the tangent bundle space of P is
globally spanned by the fundamental vector fields. The canonical symplectic
form of the orbit P is the unique form w such that, for every p in P, and every
(andning,

(w, Ep(p) A np(p)) =(p, [E, T]])

The momentum mapping for the action of G on P induced by the co-adjoint
action in g* is given by the embedding J : P - g*. For each £ in g, the momentum
JE : P - Ris given by Jg(p) ={(p, &), [18].

In the first example, a quantization of (P, w) gives rise to a representation of
SU(2), that is the double covering group of SO(3). Similarly, in the second
example, the Schroedinger quantization gives rise to a representation of the
double covering Mp(n, R) of the symplectic group; the metaplectic representa-
tion. In the third case, the orbit P is a general symplectic manifold, and one needs
a quantization scheme applicable to this case. Such a quantization scheme, called
geometric quantization, was introduced independéntly by B. Kostant, [18], [19],
and J.-M. Souriau [25].

2. GEOMETRIC QUANTIZATION

Given a G orbit P in g* with the canonical symplectic form w, let L be a
complex line bundle over P with a connection V satisfying the prequantization
condition

curvature V = —h_lpPL*w

where h is the Planck’s constant, and Pp; 1L =P is the line bundle projection.
[The Planck’s constant is introduced here in order to relate geometric quantiza-
tion to quantum mechanics. These results in rescaling some of the formulae of the
geometric quantization]. A line bundle satisfying the prequantization condition
exists if and only if # ! defines an integral de Rham cohomology class and,
if this condition is satisfied, the set of equivalence classes of such line bundles
with connections can be parametrized by the group of all unitary characters of
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the fundamental group of P.

For each function f on P, we denote by Pf the differential operator on the
space of sections of pp; defined by

where h is the Planck’s constant divided by 2w, and Ef is the Hamiltonian vector
field of f. The assumed relationship between the curvature of V and the symplec-
tic form w implies that, for every pair f;and f, of functions on P,

[Pf,, Pf,] = ihP(f,, £,).

A momentum mapping J gives rise to a homomorphism of the Lie algebra g
of G into the Poisson algebra of (P, w). Associating to each £ in g the differential
operator —ih'lPJ'g we obtain a linear representation of the Lie algebra g of G in
the space of sections of L, [19]. The representation of G obtained by integrating
this representation of g is called the prequantization representation corresponding
to (L, V). The prequantization representation is not irreducible, and we need to
restrict the representation space to a subspace carrying an irreducible represen-
tation of G.

In order to reduce the prequantization representation one introduces a pola-
rization of (P, w), that is an involutive complex Lagrangian distribution ¥ on P
such that,

D=FNFNTP, and E=(F+F)NTP,

where F denotes the complex conjugate of F, are involutive distributions on P,
and the spaces P/D and P/E of integral manifolds of D and E, respectively, are
quotient manifolds of P. If F is invariant under the action of G, then the pre-
quantization representation restricted to the space of sections of L, which are
covariantly constant along F, is in many cases irreducible.

Unless £ = TP, there is no natural scalar product in the space of sections of
L, which are covariantly constant along F, and the obtained irreducible represen-
tation of G is not unitary. In order to unitarize this representation, one introduces
a metaplectic structure, that is a double covering space of the bundle of symplec-
tic frames in TP, which is a right principal Mp(n, R) bundle over P, where n =
= (1/2) dim P. For each polarization F, the metaplectic structure gives rise to
a complex line bundle VA'F over P endowed with a partial connection covering
F. Moreover, there is a sesquilinear mapping (,) from the space of sections of
VA'F to the space of densities on P/D. For a G invariant polarization F the
space H , of sections of L ® VA'F, which are covariantly constant along /' and
push down to square integrable densities on P/D, carry an irreducible unitary
representation of G.
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The geometric quantization construction yields all irreducible unitary represen-
tations of nilpotent Lie groups, [16], and of solvable Lie groups of type I, [2]. For
semisimple Lie groups not all représentations can be obatained in this way.

Let F and F' be two different polarizations and H . and H . the correspond-
ing representation spaces. The relationship between H . and H s Can be studied
in terms of a sesquilinear mapping K : H  x H .. = C, introduced by R.J. Blattner,
B. Kostant, and S. Sternberg.

Blattner-Kostant-Sternberg kernels can be also used to study co-adjoint
orbits which do not admit G invariant polarizations, [5], [6].

The geometric quantization can be also applied to symplectic manifolds which
are not co-adjoint orbits but phase spaces of dynamical systems. For most physi-
cally interesting systems with finite numbers of degrees of freedom, the geometric
quantization construction leads from the classical phase space of the system to
the corresponding quantum theory, [21]). One exception is the Dirac theory of
electron in an external electromagnetic field, for which we cannot find a classical
phase space which would yield the correct quantum theory.

3. ORBITS AND REPRESENTATIONS

Geometric quantization associates to some co-adjoint orbits the corresponding
irreducible unitary representations of connected Lie groups. Conversely, to each
unitary irreducible representation p of a connected Lie group G, one can associate
a set of co-adjoint orbits as follows.

The infinitesimal character of p is a homomorphism )\p from the centre Z(g)
of the universal enveloping algebra U(g) into the field C of complex numbers.
The linear space Z(g) can be identified with the space of G invariant polynomials
on g*. Invariant polynomials are constant on G-orbits in g*. A G orbit P cor-
responds to the representation p if, for every invariant polynomial P on g*,

\(P)=P(=h"p),

where p is any point in P, and the factor —# -1 appears because we have introduc-
ed the Planck’s constant in the prequantization condition in Section 2.

Let G be a connected and simply connected nilpotent Lie group, and H a
connected closed subgroup of G. The geometric quantization yields a bijection
from the sets of co-adjoint orbits of G and H to the equivalence classes of irredici-
ble unitary representations of G and H, respectively. Moreover, if an irreducible
unitary representation p of G corresponds to an orbit P of G in g*, then its
restriction to H is decomposed into the direct integral of irreducible unitary
representations of H which correspond to the orbits of H contained in Dgx h*(P),
where Dy g :g* - h* is the canonical projection induced by the embedding of
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h into g, [16]. It should be noted that the projection Pps g restricted to a G
orbit P in g* induces the momentum mapping J : P - h* corresponding to the
Hamiltonian action of H in P. Thus, if Py is an H orbit in h*, then the representa-
tion of H corresponding to the orbit Py, appears in the decomposition of the
restriction of p to H if and only J~ 1(PH) is not empty.

The results above suggest the following problem. Let (P, w) be a symplectic
manifold with a Hamiltonian action of a connected Lie group H, and letJ : P — h*
be the corresponding momentum map. Suppose we have a quantization structure
in (P, w) leading to a representation p of /. We want to relate the decomposition
of pinto irreducible representations of H to the partition of P by the inverse
images J'I(PH) of co-adjoint orbits P, of H under the momentum mapping J.

If J is transverse to P, then J'I(PH) is a submanifold of P. Moreover, if the
space J‘I(PH)/H of the H orbits in J‘I(PH) is a quotient manifold of J‘I(PH),
then it has a canonically defined symplectic structure. If the quantization structu-
re in (P, w) induces a quantization structure in J‘I(PH)/H, then one could expect
that the quantization of J ‘I(PH)/H will yield some information about the appear-
ance in the decomposition of p of the representations of H corresponding to the
orbit Py,

In particular, O in k™ is the H orbit corresponding to the trivial representation
of H, and J‘l(O)/H is the reduced phase space of the zero level of the momentum
map J, [15]. Hence the quantization of the reduced phase space J~1(0)/H should
yield information about the appearance of the trivial representation in the decom-
position of .the representation p. If P and H are compact, and (P, w) admits a
prequantization line bundle and a positive complex polarisation, then the reduc-
ed phase space J -1(0)/H inherits a quantization structure, and the representation
space obtained by quantization of J~1(0)/H is canonically isomorphic to the
space of H invariant vectors in the representation space obtained by the quanti-
zation of (P, w), i.e. the trivial component of p, [13]. Under appropriate assump-
tions a similar result can be obtained for non-compact P and A and a real polari-
zation, [23].

The results stated above require that O should be a regular value for the mo-
mentum map J. If 0 is not a regular value of J, one can construct a Poisson alge-
bra, which in the regular case corresponds to the Poisson algebra of the reduced
phase space. Extending the ideas of geometric quantization to Poisson algebras
one can hope to recover the correspondence between the trivial component of
p and the quantization of the reduced Poisson algebra; such a correspondence
can be shown in an example, [24].
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Chapter 2

HAMILTONIAN DYNAMICS OF CLASSICAL FIELDS

Our aim is to apply to field theory the insight about the relationship between
the co-adjoint orbits and the irreducible unitary representations of Lie groups,
which we have learned from geometric quantization. Since geometric quantiza-
tion has been designed for symplectic manifolds, I have to discuss first the cano-
nical formulation of field theory; that is the geometric structure behind the
adjoint formalism used by AMM, (J. Arms, J. Marsden and V. Moncrief, see
[1] and the references quoted there) following GIMMSY (M. Gotay, J. Isenberg,
J. Marsden, R. Montgommery, J. Sniatycki, and Ph. Yasskin, [12]).

In the formulation proposed here the group G of symmetries of the theory
plays a fundamental role. All the structures introduced in the theory have to
be invariant under G. If, in order to achieve the required formulation of the
theory, we have to introduce an external object not preserved by the symmetry
group G, we introduce a G orbit of such external objects, so that the resulting
theory remains G invariant. For example, it is well known that, in order to obtain
the canonical equations of motion for relativistic classical fields, we have to treat
them as equations of evolution for the Cauchy data on some Cauchy surface.
However, a Cauchy surface is not invariant under the Poincaré group G. Hence,
in order to recover the relativistic invariance of the resulting theory we have to
take a G orbit of Cauchy surfaces.

4. DEDONDER-WEYL THEORY

The DeDonder-Weyl theory of the calculus of variations, [9] and [26], appears
to be a useful tool in a realization of the program outlined above. In order to
establish the notation I shall give a brief review of the essential points of DeDon-
der-Weyl theory following {20].

Let X be an oriented 4-dimensional manifold representing the space-time,
Pyy: Y - X a locally trivial fibre bundle, Z the space of 1-jets of sections of Pyy
Pyz :Z—> X the source map, and py, :Z - Y the target map. For each x €X,
the fibre Z = pXZ'l(x) consists of equivalence classes of sections s
under the equivalence relation ~ given by

vx °f Pxy

[ 12
Syx~xSyx = LSyx =TS yy»
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where 7,5, , denotes the restriction of Tsyy to T X. The . equivalence class
of a section Syx is denoted by JSyx- The source and the target maps are given
by

PxzUxSyx) =%, and Py (i syy) =syy(x),

respectively. The fibres of the target map Py, are affine spaces.
Each section Syx of Pyy given rise to a section of py ,, called the jet extension
ostX and denoted js yx defined by

Isyx(¥) =JSyx

forevery x € X. Clearly, py, =jsyy = Syz-
The canonical form of the first jet space is the mapping D : T7Z — Ker Tpyy

defined as follows. Given z = JXSYX in Z and a vectoru € TZZ,

D(u) = Tpy ,(u) — Ts (Tpy ,(u)).

A section s5,, of the source map p, , is the jet extension of its projection to

Y, SZX =j(pYZSZX)’ if and only if

DTsZX= 0.

Let &, be a vector field on Y projecting to a vector field £y in X, then there
exists a unique vector field , on Z, projecting to £, and preserving the canonical
form D. We shall refer to £, as the canonical extension of £y to Z.

A Lagrangian is a 4-form A on Z such that ¥~ A = 0 whenever u € Ker Tpy,-
A local section sy of py y, with a relatively compact domain U, is a stationary
point of the action integral corresponding to a Lagrangian A if, for each vector
field £, on Y vanishing on the boundary of U,

where £, is the canonical extension of £, to Z. Stationary points of the action
integral are solutions of the Euler-Lagrange equations corresponding to the
Lagrangian A.

Since DTjsy, = 0, for every section sy, of pyy, it follows that a modification
of A off A*KerD does not change the action integral. There exists a unique
4-form £2 satisfying the following conditions:

6 ucKerTpy, = u'Q =0,
(ii) Uy ...,u,€KerD = Q—=Au, N Aup=0,
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(iii) u,...,u;€KerD = dQu A...ANuy)=0,
(iv) u ,u,€KerTpy, = (u;Au)'Q=0.

The form 2 defined here was called by Goldschmidt and Sternberg, [10], the
Hamilton-Cartan form corresponding to the Lagrangian A. However, E. Cartan,
[7], atributes it to Th. DeDonder, and 1 shall refer to £ as the DeDonder
form corresponding to A. The variational principle with replaced by £ leads to
the DeDonder-Weyl theory in the calculus of variations. Substituting the form
€1 into the action integral, and taking into account the conditions (i) through
(iv) and the fundamental theorem in the calculus of variations one concludes
that a section s , is a stationary point of the action integral if and only if

jsyx*(E-dQ) =0,

for every vector field £ on Z.

For Lagrangian quadratic in derivatives [this notion makes sense since the
fibres of the target map p, , are affine spaces] one can show that a section sy
of py y satisfies the Euler-Lagrange equations if and only if it is a projection to
Yofasections,,, sy, = PyzSzx> such that

S, (E2 Q) =0,

for every vector field £ on Z, [22]. 1 shal refer to the above equation as the
De Donder-Weyl equation.

5. Symmetries

There are various notions of symmetries of field theory, depending on which
part of the structute of the theory is to be preserved under a symmetry transfor-
mation. Here, we use the most restrictive notion of symmetry, requiring that a
symmetry should preserve all the structure of the Lagrangian theory of the
system under consideration. In physical applications most symmetries of impor-
tance are of this type, in particular the symmetries related to the relativistic
invariance and the gauge invariance in Yang-Mills theory and general relativisty
satisfy this condition.

Thus, by a symmetry of the theory we understand a diffeomorphism Ey of
Y inducing a diffeomorphism g, of X such that g, p, = p, &, and such that
the induced diffeomorphism g, of Z preserves the Lagrangian,

g, A = A.

Since the DeDonder form £ correspondig to A, is defined in terms A and
the structure of the jet bundle, it follows that symmetries preserve £2. Simi-
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larly, an infinitesimal symmetry is a vector field EY on Y projecting to a vector
field £, on X, and such that its extension £ 7 to Z preserves A,

£EZA =0.

Clearly, &, preserves also £2.

We denote by G the group of symmetries of the theory under consideration
and by g its Lie algebra. Elements of g are infinitesimal symmetries, however not
all infinitesimal symmetries need to integrate to 1-parameter subgroups of G.
Thus, the Lie algebra g of G is a Lie subalgebra of the Lie algebra of infinitesimal
symmetries. Since elements of G are diffeomorphisms of Y, we denote them by
8y to distinguish them from the induced diffeomorphisms of other spaces. Howe-
ver, we can consider G as a abstract group acting in various spaces. In this case
elements of G will be denoted by g, and gy, gy, and g, will denote the action of
g in X, Y, and Z, respectively. Similarly, if there is no confusion possible, ele-
ments of g, treated as an abstract Lie algebra, will be denoted by single letters,
eg. & and &y, £, and £, will denote the corresponding fundamental vector
fieldsin X, Y, and Z, respectively.

The relationship between infinitesimal symmetries and conservation laws is
given by the First Noether Theorem. Let U be a relativaly compact domain in X
with boundary expressible as a difference of two hypersurfaces s, and 555

U=s,—s;.
If, £ is an infinitesimal symmetry then,

§21dQ = —d(¢,~ Q)

and, for each section Spx ¢ U—->Z of Pyz satisfying the DeDonder-Cartan equa-
tions, we have

/SZX*(EZJQ)ZISZX!‘(EZ—’Ql

5 $2

A symmetry g € G will be called a gauge symmetry if, for every pair of open
sets U and U' in X with disjoint closures, there exists a symmetry g’ € G such
that

g'(y)=g(y) forevery yé&py, N,
g =y for every y EpXY’l(U').

The gauge symmetries form a normal subgroup of G, which we denote by H.
The Lie algebra of H will be denoted by 4.
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The notion of gauge symmetries given above agrees with the commonly accept-
ed notion of gauge symmetries in gauge theories. In general relativity, the group
of diffeomorphisms of the space-time manifold satisfies our conditions for
gauge symmetries.

Let U be an open set in X bounded by two surfaces s, and s,. The Second
Noether Theorem implies that, for each section Szx with domain U satisfying
the DeDonder-Cartan equations, the constants of motion corresponding to all
infinitesimal gauge symmetries, such that the intersections of their supports
with s, and s, can be separated by open sets, have to vanish. This consequence
of the Second Noether Theorem is the main source of constraints in gauge field
theories and general relativity.

6. PRIMARY CONSTRAINTS

Let M be an oriented 3-dimensional manifold representing a typical Cauchy
surface. A parametrized Cauchy surface in X is an embedding s of M into X.
Let § be a submanifold of the space of embeddings of M into X such that
gyS €S for each s €S and each g €G. It is the space of parametrized Cauchy
surfaces we are going to admit in our canonical formulation of field dynamics.

Let Q denote the space of embeddings g :M —> Y such that py,q is in S.
An embedding g in Q represents Dirichlet data on the parametrized Cauchy
surface s = p, ¢, that is g describes the values of the dynamical fields on the
Cauchy surface s(M). Q is a submanifold of the manifold of smooth maps from
M to Y. 1t is fibered over S with the projection map PSQ :Q — S given by

pSQ(Q) =Pyxydqd

for every g in Q. The space Q is the field theory analogue of the configuration
space-time of the Newtonian dynamics.

Let V' denote the space of embeddings v : M - Z, such that p, ,v is contained
in Q and there exists a local section s, of p, , such that

V=/SyxPxzV-

The space V is the space of «virtual» Cauchy data for the DeDonder-Cartan
equations of the field theory under consideration. In the presence of constraints
the actual Cauchy data, that is the Cauchy data of solutions of the Hamilton-
-Cartan equations form a proper subset C of V. We denote by Poy the projection
from ¥V to Q given by Py y () =p, v, and by pg, :V - § the composition of
Pov and Psg> Psy = PspPoy- For each s in S, the fibre V, of V over s is the space
of «virtual» Cauchy data on the Cauchy surface s(M).

The Legendre transformation is a mapping [ : ¥V — (Ker TpSQ)* defined as
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follows. For each g €Q, each v € V;I = PQV_I(q), and each vector £ € Kerq T[)SQ,

(L), & =fu*(£”9),

where £’ is the vector field on Z, defined on v(M), such that £ = £'v. The image
P of the Legendre transformation [,

P: L(V)}

is the primary constraint bundle of the theory. For each s €S, P = L(V,) is the
primary constraint manifold corresponding to the Cauchy surface s.

In sufficiently regular field theories, e¢.g. general relativity and Yang-Mills
theory, the projection map pp,, from V to Pinduced by L is a submersion, the
cotangent bundle projection T*Q - @ induces a fibration PQ p:P—Q, and
there exists a unique 1-form 8 on P such that, forevery v €V and every £ € TV,

(ppV*0: E> =/U*(E'_' Q);

where £’ is the vector field on Z, defined on v(M), such that & = £'v. For each
s €8, the fibre of (Ker TpSQ)* over s is canonically isomorphic to 7*Q, where
o, =pSQ'1(s). The pull back 6, of § to P, coincides with the pull back to P,
of the canonical 1-form of the cotangent bundle T*Q by the inclusion map
P ~T*Q,.

For each open set U in X, we denote by Us the subset of S consisting of all
s € S such that s (M) is contained in U. Each local section Syx of Pyy with domain
U gives rise to a section s, of Psp = DsoPop with domain Ug such that, for each
seUg,

Spg(s) = L(]'sYXs).

Suppose Uy is open and non-empty. Then a section s, over U satisfies the
DeDonder-Cartan equations if and only if, for each vector field £ on P,
sps*(E~d0) =0,
Thus, we have arrived at a formulation of dynamics of classical fields analogous
to the Hamilton-Cartan formulation of time dependent dynamics.
In there are no constraints in the theory and all the infinite dimensional mani-
folds are suitably chosen, then P = (Ker TpSQ)*, and

Kerd8 ={f € TP|£-d0 = 0}
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is an integrable distribution on P transverse to the fibres of pg, In the presence
of constraints

N =Kerd@ NnKer Tpg,

does not vanish. For sufficiently regular theories, e.g. general relativity and Yang-
-Mills theory, N is an integrable distribution on P and the space R of integral
manifolds of N is a quotient manifold of P. There is a unique closed 2-form
w on R such that

df = w

5

Prp"
where p, P :P—> R is the canonical projection. R is the reduced phase bundle
of the primary constraint bundle P. It is fibred over S by a map pg, such that
Pgg Prp = Dsp- For each s € S, the pull back w, of w to the fibre R _is a symplec-
tic form. (R, w,) is the reduced phase space corresponding to the Cauchy surface
s.

For a physically important class of field theoreis, which includes general relati-
vity and Yang-Mills theory, there is a canonically defined bundle A over §, with
the projection map pg ,, such that the primary constraint bundle has a canonical
product structure over § (Whitney sum),

P=R st.

This product structure is stable under the action of the group G of symmetries
of the theory. A is called the atlas bundle of the theory. For each s € §, elements
of A = pSA’l(s) are called atlas fields on the Cauchy surface s. The subgroup
H of the gauge group H stabilising s acts transitively on 4 s =Ps4 1(s).

We denote by p,,:P—~A the projection defined by the product structure.
For each a € A, the fibre P = pAP‘l(a) is diffeomorphic to R, where s = pSA(a),
and it inherits from Rs its symplectic form w,. Thus, P has a structure of a sym-
plectic floration. The closed form d6, estending the family of symplectic forms
on the fibres, defines a distribution hor 7P in TP transverse to p,, defined by

hor TP ={{ € TP|n€Ker Tp, , =) {¢-'d6,n) = 0}.

It is a connection on P considered as a fibre bundle over 4, [11].

7. HAMILTONIAN DYNAMICS

Let ¢g:R— .5 be a curve in S. For each r € R and each m M, we denote by
(cs(t), m) the point in X associated to m by the embedding cS(t). The curve
cg defines a 3 + 1 splitting of the space-time X if the mapping from R x M to X,
associating to each (¢, m) the point (cs(t), m)is a diffeomorphism. If o is a curve
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in @ such that ¢ = PsoCo defines a 3 + 1 splitting of the space time manifold X,
then it defines a section Syx of Pyy such taht (cQ(t), m) = sYX((cs(t), m)). We
want to determine the conditions for curves ¢p in P which guarantee that the
section s, , determines by €o =Popp satisfies the Euler-Lagrange equations
provided ¢g = pgpcp defines a 3 + 1 splitting of the space-time.

The construction given in the preceding section is invariant under the symme-
try group G of the theory. Hence, G acts in S, 9, V, P, R, and A, intertwining the
projection maps and preserving the form 8 in P,

g,*0 =0,

for each g € G, where g, denotes the diffecomorphism of P induced by g. Similarly,
infinitesimal symmetries give rise to vector fields in the space S, @, V, P, R, and
A, related by the projection maps and, for every infinitesimal symmetry £, the
corresponding vector field £, on P preserves 0,

£5p0 =0,
which is equivalent to
Ep~df = —d(8, &)
The mapping J; : P - g* such that, for every p €P and every £ €g*,
Up), £) =48, £(0),

intertwines the action of G in P and the co-adjoint action of G in g*. Hence,
it is 2 momentum mapping corresponding to the action of G in P. For each
a € A, the stability group G, of a has a Hamiltonian action in the fibre P, with
the momentum map J, : P, > g * given by

U 2), £) =0, £,

forevery p €P,andevery £ €g,.

Let £ be an infinitesimal symmetry, and £, and EV the corresponding vector
fields in Z and V, respectively. For each veV, EV(U) =£,v. Moreover,
£p(Dp, () = Tpy,(§,(v)). Taking into account the expression for the Legendre
transformation, we see that (J(p,,(v)), ) is the value on v of the conserved
quantity associated to & by the First Noether Theorem.

Let J, :P—h* be a momentum mapping corresponding to the action in P
of the gauge group H,

(JH(p)9 E) - (6, Ep(p)):

for every £ €h and every p € P. The Second Neother Theorem shows that a
necessary condition for virtual Cauchy data v ¥ to admit a finite time evolution is
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the vanishing of JH(pPV(U)). This condition is also sufficient for general relativity
and the Yang-Mills theory. For these theories, the final constraint in P is given
by the zero level of the momentum map corresponding to the action of the
gauge group H,

pPV(C) = JH—I(O)y

where C is the subspace of V consisting of the Cauchy data which admit a finite
time evolution.

For the class of theories satisfying all the assumptions made here we have
the following result. Let £ be an infinitesimal symmetry, EP the corresponding
vector field on P, hor EP the horizontal component of EP relative to the connec-
tion / defined in the preceding section, c, an integral curve of hor £, such that
its projection to § defines a 3 + 1 splitting of space-time, and 5, the section

defined by Co =PppCp

L. If, for some ¢, cP(to)eJH“l(O), then c,(1) €J,71(0) for all ¢, and the
section s,  satisfies Euler- Lagrange equations.

H. For each a € 4, the restriction to P, of the vertical component ver &, of
§p is the Hamiltonian vector field of <6, £,) restricted to P.

Thus, in order to find solutions of the Euler-Lagrange equations we need to
choose an infinitesimal symmetry £ such that an integral curve cg of &g defines
a 3 + 1 splitting of space-time, lift cg to an integral curve C4 of EA and, for
each a in ¢ 4 (R), find the Hamiltonian vector field in Pa of the restriction of
(0, £p) to P,. This gives ver &, restricted to pAP‘l(cA(R)). The integral curves of
hor §, = £, — ver §p, contained in p, P’l(c 4(R)) and passing through points in
JH‘I(O) give rise to solutions s, X of Euler-Lagrange equations. This is an intrinsic
version of the adjoint formalism used in [1].
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Chapter 3

QUANTIZATION OF GAUGE THEORIES

In the preceding lecture we obtained, for a certain class of field theories,
a Hamiltonian formulation of dynamics which is covariant relative to the group
G of symmetries of the underlying Lagrangian theory. In this formulation, the
evolution takes place in the primary constraint bundle P fibered over the atlas
bundle 4. The fibration p,, : P > A is symplectic, and there is an exact 2-form
d@ on P extending the family of symplectic forms along the fibres which defines
a connection hor TP. The group G acts in P by structure preserving diffeomor-
phisms. The mapping Jo P> g¥ given, forevery p €P and § €g, by

(JG(P), E) = (6, Ep(p)>,

intertwines the actions of G in P and in g*. For each £ €g, the evolution in the
direction £, is given the vector field

hor EP= EP——ver El,,
where ver EP is the hamiltonian vector field of the momentum
JE = (0, EP>

corresponding to §; more precisely, for each a €4, the restriction of ver §,
to the fibre P is the Hamiltonian vector field of (8, £p) restricted to P,. Sections
Syx of Pyy defined by integral curves of hor EP which are contained in the zero
level of the momentum map J,,, corresponding to the aption in P of the gauge
group H, satisfy Euler-Lagrange equations. Conversely, every section Syx satisfy-
ing Euler-Lagrange equations gives rise to an integral curve of hor EP contained
in J,~1(0).

8. SELECTION RULES DUE TO GAUGE INVARIANCE

In the formulation of dynamics outlined above the group G of symmetries of
the Lagrangian theory and its normal subgroup H of gauge symmetries play
fundamental roles. The dynamics is given by the Hamiltonian vector fields of
the momentum functions corresponding to elements of the Lie algebra g of G.
The constraints are given by the vanishing of the momentum functions cor-
responding to the elements of the Lie algebra 4 of the gauge group H. Hence, the
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first step in a quantization of the system described above should lead to a repre-
sentation of the symmetry group G. This would give rise to a unitary representa-
tion of the gauge group H.

A unitary representation of a locally compact Lie group can be decomposed
into its irreducible components. The representation space can be expressed as
a direct integral over the space of irreducible unitary representations of the

group.
H :pr d #P >

where dup is a measure on the space of irreducible unitary representations, and
H, is the representation space of a representation p. Vectors in i are given as
functions associating to each p a vector ¢ (p) in Hp such that the functioni v (p) |2
is integrable with respect to the measure dpb. The scalar product of ¥ and x in
H is given by

W% =f<w(p)|x(p)>dup.

For each element g of the group, the action of the unitary operator U(g) on ¢
in H is given by

(U@ ¥)(p) = U,(g) ¥(p),

where g - U (g) is the unitary representation p of the group in H o

The gauge group H is not locally compact, and we cannot guarantee that its
unitary representation obtained by field quantization decomposes as direct
integral of irreducible unitary representations. However, if this were the case,
the probability of transition between the states corresponding to different irredu-
cible representations of H would vanish. Moreover, the classical dynamical varia-
bles are components of the equivariant mementum mapping J;,. Given £in g, we
denote by QJE the quantum operator in H corresponding to the momentum Jz'
Since H is a normal subgroup of G it follows that, for each n € A,

. /J)= J[ ch.

P, 1]

Therefore, there would exist a family QJE ) of operators in Hp such that, for each
Y in H, and each p,

(@7, V)oY = QJ, , ¥ (P).

In the situation described above, for each p, the evolution of the states tran-
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sforming under the gauge group H according to the representation p would be
given by an operator QJg,p, for an appropriate infinitesimal symmetry &, and
there would be no interaction between states corresponding to different irreduci-
ble representations. If the experimental data indicated that only the states cor-
responding to some irreducible representations p were realized in nature, we
could restrict our considerations to the corresponding spaces H o without violat-
ing the invariance of the theory under the group G of symmetries of the underly-
ing classical theory.

All the facts mentioned above are well known from the study of symmetry
groups in quantum physics. The gauge groups of field theory differ from sym-
metry groups in quantum mechanics by their localizability in the space time
which leads, via the Second Noether Theorem, to constraints given by the vanish-
ing of the corresponding momentum map. Incorporation into the quantum
theory of the classical constraint condition JH = 0 is the next step in quantiza-
tion of gauge theories; it will be discussed in following section.

9. DIRAC’S QUANTIZATION OF CONSTRAINTS

In 1950 P.A.M. Dirac proposed a quantum implementation of the classical
constraint condition J,; = 0, requiring that the physically admissible states should
be joint eigenstates of the operators QJE, for all £ € h, corresponding to the
eigenvalue 0. Since the operators QJE, for £ € h, generate the action of H in the
representation space, Dirac’s condition is equivalent to the requirement that the
physically admissible states should be gauge invariant. This interpretation of the
Dirac’s theory of quantization of constraints is supported by the relationship
between orbits and representations discussed in Lecture 1.

If 0 is not in the discrete spectrum of the operators QJE, for £ € h, then the
gauge invariant states will not be normalizable. This is the reason for the contra-
diction encountered in [4]. In this case the space of physically admissible states
consists of generalized eigenvectors of the operators QJE, defined as follows. Let
H> denote the subspace of H{ which is the common domain for the universal
enveloping algebra of #. That is ¢ € H ™ if and only if, for each £ € /1, and each
positive integer n, (QJE)" is defined on ¢. The topology in H™ is defined by the
system of seminorms ]wlm =[(QJE)"1,I/]. Llet # = denote the space of conti-
nuous linear functionals on H~. The representation of G in H estends to a repre-
sentation in H~~; for each £ €g, and each ¢ € H =, the action of QJ on ¢ is
defined by

(QJ, 0, V) = (¢, 0J, V)
for each ¥ € H=. The space of physically admissible states is the subspace of
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H™ " consisting of H invariant elements.

It should be noted that the scalar product in H need not induce a scalar product
in the space of physically admissible states, and one will have to determine
independently the scalar product in the space of physically admissible. This
situation is common in physics. For example, the Klein-Gordon operator is
self adjoint in the space of square integrable functions on the space time. Howe-
ver, solutions of the Klein-Gordon equation are not square integrable, and their
scalar product involves only integration over spatial variables.

It is possible that the approach to quantization of gauge invariant theories
might be helpfull in understanding the phenomenon of confinement of quarks
and gluons in quantum chromodynamics and the spontaneous symmetry in the
Salam Weinberg model. However, a conclusive test of applicability of this ap-
proach to physics of elementary particles would be a construction of quantum
chromodynamics along the lines discussed here, including a gauge invariant
approximationmethod allowing for quantitative predictions. This is a rahter
tall order, and at present we have to rely on indirect evidence provided by a
qualitative analysis of the theory, and a quantitative analysis of simplified models.

A convenient finite dimensional model of Yang-Mills theory is provided by
SU(2) invariant Yang-Mills fields on the compactification U(1) x SU(2) of the
Minkowski space. In this model the configuration space consists of 3 x 3 matrices,
and the symmetry group is the product of SO(3) with itself, G = SO(3) x SO(3).
For each matrix A and each g=(L,R)€G, g4 = LAR™!. The Yang-Mills
Lagrangian, restricted to SU(2) invariant fields, leads to constrained Hamiltonian
dynamics with a Hamiltonian H and the constraints given by the vanishing of the
momentum map corresponding to the action of SO (3) given by the left multipli-
cation. Thus, H = SO (3) x I plays the role of the gauge group, [14].

Schroedinger quantization of this model leads to a unitary representation of
G in the space H of square integrable functions i (A4). This representation can be
decomposed into a direct sum of irreducible representations of H. In particular, a
wave function Y {4) belongs to a trivial representation of H if and only if it
depends only of AT A. The quantum Hamiltonian QH is given by

QH = [(—1/2)h?a + V(4)],

where the potential energy term V is a quartic polynomial in 4 tending to infinity
as |A | tends to infinity. Hence, QH has a discrete spectrum, and the space of H
invariant states is spanned by eigenvectors of QH. Moreover, the ground state of
QH is non-degenerate.

It is of interest to enlarge the model by including a Higgs field and study if
there is a possibility of a spontaneous symmetry breaking in the resulting quan-
tum theory.
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