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Chapter1

ORBITSAND REPRESENTATIONS

1. MOMENTUM MAP

Let (F, w) be a symplectic manifold. That is P is a smoothmanifold and w
is a closed non-degenerate2-form on P. For each function f on F, we denote

by ~ the Hamiltonianvectorfield off definedby

~fw=_df~

where~ denotestheleft interior productof formsby vector fields,

The mapf-÷~. induces the structureof a Lie algebrain the spaceof smooth
functions on F, called the Poissonalgebraof (P, w). The Poissonbracketof f
andh is given by

[f,h] =_(w,~fAEh)=—~fh=~hf•

We say that an action of a connectedLie group G in P is Hamiltonian if there

existsa G equivariantmappingJ :P~÷g*,whereg* is the dualof the Lie algebra

g of G, such that, for each~in g, this actionof exp (— t~)in P is given by the
translationby t along the integral curvesof the Hamiltonianvectorfield of the

functionf~onP definedby

J1(p)=(J(p),~)

for every p in F. The mapJ is calleda momentummapfor the actionof G in

(F, w), and thefunctionJ~is calleda momentumassociatedto ~.

Examples

1. Consider P = R
6 with the canonical coordinates (p

7,q’), i,j = 1,2,3,

w = E. dp1A dq’, and G = SO(3).The actionof G in Pis givenby thefundamen-

tal action of 50(3) on the variablesq’, and its transposeon the variablesp1

The Lie algebraso(3) is 3-dimensional,and a momentummapgives the angular

mementum.

2. Let F = R
2~with the canonical coordinates(p., q1), 1,1 = 1,.. . , n, the

symplecticform as before,and G = Sp(n,R), the groupof all lineartransforma-
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tions preservingw. Componentsof a momentummappingarequadratichomoge-

neouspolynomialson P.

3. Let G be a connectedLie group, and P an orbit of the co-adjointaction of
G in g*. For each ~ in g, let denotethe fundamentalvector field on P cor-
respondingto ~, that is the translationby t alongthe integral curves of ~ gives

the action of exp (t~)in P. Since P is diffeomorphic to G/G~~wherep is any

point in F, and G~is the stability group of p, the tangentbundlespaceof P is
globally spannedby the fundamentalvector fields. The canonical symplectic
form of the orbit P is the uniqueform w suchthat, for every p in F, and every

~and~ ing,

(w, ,(p) A ~l~,(p))= (p, [~, ~7]>

The momentummapping for the action of G on P inducedby the co-adjoint
action in g * is given by theembeddingJ : P -+ g~ Foreach~in g, themomentum

P —* R is given by ~ = (p, ~), [181.

In the first example,a quantizationof (P, w) gives rise to a representationof
SU(2), that is the double covering group of S0(3). Similarly, in the second
example, the Schroedingerquantizationgives rise to a representationof the

double coveringMp(n, R) of the symplecticgroup; the metaplecticrepresenta-
tion. In the third case,the orbitP is ageneralsymplecticmanifold,andoneneeds

a quantizationschemeapplicableto this case.Sucha quantizationscheme,called
geometricquantization,was introducedindependentlyby B. Kostant,[18], [191,

andJ.-M. Sounau[251.

2. GEOMETRICQUANTIZATION

Given a G orbit P in g* with the canonicalsymplectic form c~,let L be a

complex line bundle overP with a connectionV satisfyingthe prequantization
condition

curvatureV = _h_lppL*w

whereh is the Planck’s constant,and : L —*P is the line bundle projection.
[The Planck’s constantis introducedhere in order to relategeometricquantiza-

tion to quantummechanics.Theseresultsin rescalingsomeof the formulaeof the
geometricquantization].A line bundle satisfyingthe prequantizationcondition
exists if and only if h

1w defines an integral de Rhamcohomologyclassand,
if this condition is satisfied,the set of equivalenceclassesof suchline bundles
with connectionscan be parametrizedby the group of all unitary charactersof
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the fundamentalgroupofF.

For each function f on F, we denoteby Pf the differential operatoron the
spaceof sectionsof ~pL definedby

Ff=—ihV~j+f,

where h is the Planck’s constantdivided by 2ir, and ~JIS the Hamiltonianvector
field off. The assumedrelationshipbetweenthe curvatureof V and the symplec-

tic form w implies that, for everypairf1 andf2 of functionson ~,

[Pf1,Pf2]=ihF[f1,f2].

A momentummapping J gives rise to a homomorphismof the Lie algebrag

of G into the Poissonalgebraof (F, w). Associatingto eachE ing the differential

operator—ih~FJ1we obtain a linear representationof the Lie algebragof G in
the spaceof sectionsof L, [191. The representationof G obtainedby integrating

this representationof g is calledthe prequantizationrepresentationcorresponding

to (L, V). The prequantizationrepresentationis not irreducible,and we needto
restrict the representationspace to a subspacecarrying an irreducible represen-

tation of G.

In order to reducethe prequantizationrepresentationoneintroducesa pola-
rization of (F, w), that is an involutive complex Lagrangiandistribution F on P

suchthat,

D=FflFflTP, and E=(F+F)flTF,

whereF denotesthe complex conjugateof F, are involutive distributions on F,

and the spacesP/D and F/E of integral manifoldsof D andE, respectively,are

quotient manifolds of P. If F is invariant under the action of G, then the pre-

quantizationrepresentationrestrictedto the spaceof sectionsof L, which are
covariantlyconstantalongF, is in many casesirreducible.

UnlessE = TP, thereis no naturalscalarproduct in the spaceof sectionsof

L, which are covariantlyconstantalong F, and the obtainedirreduciblerepresen-
tation of G is not unitary. In orderto unitarizethis representation,oneintroduces

a metaplecticstructure,that is a doublecoveringspaceof the bundleof symplec-
tic frames in TF, which is a right principalMp (n, R) bundleover F, where n =

= (1/2)dim P. For each polarizationF, the metaplecticstructuregives rise to

a complexline bundle\/~~overP endowedwith a partial connectioncovering

F. Moreover, there is a sesquilinearmapping (,) from the spaceof sectionsof
to the spaceof densities on P/D. For a G invariant polarization F the

spaceU F of sectionsof L ® \/~i~which are covariantlyconstantalong F and
push down to square integrabledensities on F/D, carry an irreducible unitary
representationof C.



GEOMETRIC QUANTIZATION AND CONSTRAINTS IN FIELD THEORY 5

The geometricquantizationconstructionyields all irreducibleunitary represen-

tationsof nilpotentLie groups,[16], andof solvableLie groupsof typeI, [2]. For
semisimpleLie groupsnot all representationscanbe obatainedin this way.

Let F and F’ be two different polarizationsand HF and HF the correspond-

ing representationspaces.The relationshipbetweenHF and HF, can be studied
in termsof a sesquilinearmappingK : HF x HF -+ C, introducedby R.J. Blattner,
B. Kostant,and S. Sternberg.

Blattner-Kostant-Sternbergkernels can be also used to study co-adjoint
orbitswhich do notadmit C invariantpolarizations,[5], [6].

The geometricquantizationcanbe also applied to symplecticmanifoldswhich
are not co-adjoint orbitsbut phasespacesof dynamicalsystems.For mostphysi-

cally interestingsystemswith finite numbersof degreesof freedom,the geometric
quantizationconstructionleadsfrom the classicalphasespaceof the systemto

the correspondingquantumtheory, [21]. One exceptionis the Dirac theory of
electron in an externalelectromagneticfield, for which wecannotfind a classical
phasespacewhich would yield the correctquantumtheory.

3. ORBITS AND REPRESENTATIONS

Geometricquantizationassociatesto someco-adjoint orbits the corresponding
irreducible unitary representationsof connectedLie groups.Conversely,to each

unitary irreduciblerepresentationp of a connectedLie group G, onecanassociate
a setof co-adjointorbitsas follows.

The infinitesimal characterof p is a homomorphismA~from the centreZ(g)

of the universalenveloping algebraU(g) into the field C of complexnumbers.
The linearspaceZ(g) can be identified with the spaceof C invariantpolynomials

on g*. Invariant polynomials are constanton G-orbits in g*• A G orbit P cor-
respondsto the representationp if, for every invariant polynomial P on g~,

wherep is any point in F, and the factor — h —1 appearsbecausewe haveintroduc-
ed the Planck’sconstantin the prequantizationconditionin Section2.

Let G be a connectedand simply connectednilpotent Lie group, and H a
connectedclosedsubgroupof C. The geometricquantizationyieldsa bijection

from the setsof co-adjointorbitsof C andH to the equivalenceclassesof irredici-
ble unitary representationsof G andH, respectively.Moreover,if an irreducible

unitary representationp of C correspondsto an orbit P of G in g*, then its
restriction to H is decomposedinto the direct integralof irreducible unitary
representationsof H which correspondto the orbits of H containedin Pg*h*O~)~

where Ph*gs :g* .÷h* is the canonical projectioninducedby the embeddingof
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h into g, [16]. It shouldbe notedthat the projection Ph*gs restrictedto a C

orbit P in g* inducesthe momentummapping J : P -÷ h * correspondingto the
Hamiltonianaction of H in P. Thus, if PH is anH orbit in h*, thenthe representa-
tion of H correspondingto the orbit ~H appearsin the decompositionof the

restrictionof p to H if andonlyJ is notempty.
The results abovesuggestthe following problem. Let (P, w) be a symplectic

manifold with a Hamiltonianactionof a connectedLie groupH, andletJ P —~

be the correspondingmomentummap.Supposewe havea quantizationstructure
in (F, w) leadingto a representationp of H. Wewant to relatethedecomposition
of p into irreducible representationsof H to the partition of F by the inverse

images~ of co-adjoint orbits of H underthe momentummappingJ.

If J is transverseto ~H’ thenJ’ (~)is a submanifoldof P. Moreover, if the
spaceJ’(PH)/H of the H orbits in ~ is a quotientmanifold of
then it hasa canonicallydefinedsymplecticstructure.If the quantizationstructu-

re in (F, w) inducesa quantizationstructureinf~ (PH)/H thenonecould expect

that the quantizationof f1 (PH)/H will yield someinformation aboutthe appear-
ancein the decompositionof p of the representationsof H correspondingto the

orbit
In particular,0 in h’* is the H orbit correspondingto the trivial representation

of H, and f~ (0)/H is the reducedphasespaceof the zero level of themomentum

mapf, [15]. Hencethe quantizationof thereducedphasespacef’(O)/Hshould
yield information abouttheappearanceof thetrivial representationin the decom-
position of the representationp. If P and H are compact,and (F, w) admits a
prequantizationline bundleand a positive complexpolarisation,then the reduc-
ed phasespaceJ’(0)/H inherits a quantizationstructure,andthe representation

spaceobtained by quantizationof J1 (0)/H is canonically isomorphic to the
spaceof H invariant vectorsin the representationspaceobtainedby the quanti-

zation of (F, w), i.e. the trivial componentof p, [13]. Underappropriateassump-
tions a similarresult can be obtainedfor non-compactP andH and a realpolari-
zation, [23].

The results stated aboverequire that 0 shouldbe a regularvalue for the mo-
mentummapf. If 0 is not a regularvalue off, one canconstructa Poissonalge-

bra, which in the regularcasecorrespondsto the Poissonalgebraof the reduced
phasespace.Extending the ideas of geometricquantizationto Poissonalgebras

one can hope to recoverthe correspondencebetweenthe trivial componentof
p and the quantizationof the reducedPoissonalgebra;such a correspondence
canbe shownin an example,[24].
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Chapter 2

HAMILTONIAN DYNAMICS OF CLASSICAL FIELDS

Our aim is to apply to field theory theinsight aboutthe relationshipbetween
the co-adjoint orbits and the irreducible unitary representationsof Lie groups,
which we have learned from geometricquantization.Sincegeometricquantiza-

tion hasbeendesignedfor symplecticmanifolds,I have to discussfirst the cano-
nical formulation of field theory; that is the geometricstructurebehind the

adjoint formalism used by AMM, (J. Arms, J. Marsdenand V. Moncrief, see
[1] and the referencesquoted there)following GIMMSY (M. Gotay,J. Isenberg,
J.Marsden,R. Montgommery,J. Sniatycki, andPh. Yasskin,[12]).

In the formulation proposedhere the group G of symmetriesof the theory

plays a fundamentalrole. All the structuresintroducedin the theory have to
be invariant under G. If, in order to achieve the required formulation of the
theory,we have to introducean externalobject not preservedby the symmetry

group G, we introducea G orbit of such externalobjects,so that the resulting
theoryremainsG invariant.Forexample,it is well knownthat, in order to obtain
the canonicalequationsof motion for relativistic classicalfields,wehaveto treat

them as equationsof evolution for the Cauchydata on some Cauchy surface.
However, a Cauchysurfaceis not invariant underthe Poincarêgroup G. Hence,
in order to recoverthe relativistic invarianceof the resulting theory we haveto
takea G orbit of Cauchysurfaces.

4. DEDONDER-WEYL THEORY

The DeDonder-Weyltheoryof the calculusof variations,[9] and [26], appears
to be a useful tool in a realization of the programoutlined above. In order to
establishthe notation I shall give a brief review of the essentialpointsof DeDon-

der-Weyltheory following [201.
Let X be an oriented 4-dimensional manifold representingthe space-time,

Y -* X a locally trivial fibre bundle,Z the spaceof 1 -jets of sectionsof ~ ~,
7 -+ X the sourcemap, and ~ : Z -+ Y the target map. For eachx EX,

the fibre Z~= ~ 1(x) consistsof equivalenceclassesof sections~ of ~
underthe equivalencerelation ,~ given by

syx~s’yx ~ ~
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where T,s},A. denotesthe restriction of Ts~~to TX. The ~ equivalenceclass
of a sections~,

1is denotedby ~ The sourceand the targetmapsare given
by

Px~(j~5~~)x,and

respectively.The fibresof thetargetmapp~areaffine spaces.
Eachsections~,A.of ~ given rise to a sectionofp~~,calledthejet extension

ofs~xanddenoted~ definedby

j5yx(x)j~8y~,

for everyx EX. Clearly,p~= ~ = s~.

The canonicalform of the first jet spaceis the mappingD : TZ —* Ker Tp~y

definedas follows. Givenz = J1s~ in Z and a vectoru E T~Z,

D(u) = Tpyz(u)— Ts~~(Tp~~(u)).

A section ~ of the source map p,~is the jet extensionof its projection to
Y,S~A,~1(P~~sz~), if andonly if

DTs~1= 0.

Let be a vectorfield on Y projectingto a vectorfield in X, then there
existsa unique vectorfield on Z, projectingto andpreservingthecanonical
formD. Weshall referto asthe canonicalextensionof to Z.

A Lagrangianis a 4-form A on Z such that u
1A = 0 wheneveru E KerTp

1~.

A local section of ~ with a relatively compactdomain U, is a stationary

point of the action integral correspondingto a LagrangianA if, for eachvector

field on V vanishingon theboundaryof U,

fisy~*L~A= 0,

where is the canonical extensionof to Z. Stationarypointsof the action
integral are solutions of the Euler-Lagrangeequationscorrespondingto the

LagrangianA.
SinceDTjs~~= 0, for every section~ of Pry’ it follows that a modification

of A off A
4KerD does not changethe action integral. There existsa unique

4-form f2 satisfyingthe following conditions:

(i) uEKerTp~~~ u~&Z=0,

(ii) U

1,. . . , u4 E KerD ~ — A, u1 A.. . A u4) = 0,
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(iii) u
1 u5EKerD ~ (df2,u1A.. .Au5)=0,

(iv) u1,u2EKerTp~z~ (u1Au2)
1f1=0.

The form fi definedhere was called by Goldschmidtand Sternberg,[101, the

Hamilton-Cartanform correspondingto the LagrangianA. However,E. Cartan,
[7], atributes it to Th. DeDonder, and I shall refer to &2 as the DeDonder

form correspondingto A. Thevariational principle with replacedby fI leadsto

the DeDonder-Weyltheory in the calculus of variations. Substitutingthe form
~2into the action integral, and taking into accountthe conditions(i) through
(iv) and the fundamentaltheoremin the calculus of variationsone concludes
that a section~ is a stationarypointof the actionintegralif andonly if

jsy~*(~Jd~fl= 0,

for everyvectorfield ~ on Z.

For Lagrangian quadratic in derivatives [this notion makes sense since the
fibres of the targetmap ~ are affine spaces]one can show that a section
of P

1y satisfiesthe Euler-Lagrangeequationsif and only if it is a projectionto
V of a section~ ~ = suchthat

szx*(~d~)= 0,

for every vector field ~ on Z, [22]. I shal refer to the aboveequationas the
De Donder-Weylequation.

5. Symmetries

There are various notions of symmetriesof field theory,dependingon which
part of the structuteof the theory is to be preservedundera symmetrytransfor-
mation. Here,we use the most restrictivenotion of symmetry,requiringthat a
symmetry should preserveall the structure of the Lagrangian theory of the
systemunder consideration.In physical applicationsmostsymmetriesof impor-

tance are of this type, in particular the symmetriesrelatedto the relativistic
invariance and the gaugeinvariancein Yang-Mills theory andgeneralrelativisty
satisfythis condition.

Thus, by a symmetry of the theory we understanda diffeomorphismg~of

Y inducing a diffeomorphism~ of X such that = P~y~y~and such that
theinduceddiffeomorphism~ of Z preservesthe Lagrangian,

g~*A= A.

Since the DeDonder form ~ correspondigto A, is defined in terms A and
the structure of the jet bundle, it follows that symmetriespreserve&2. Simi-
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larly, an infinitesimal symmetry is a vectorfield on V projectingto a vector
field on X, and suchthat its extension toZ preservesA,

L~. A=0.

Clearly,~ preservesalso &2.
We denoteby G the group of symmetriesof the theoryunderconsideration

andby g its Lie algebra.Elementsof g areinfinitesimal symmetries,howevernot
all infinitesimal symmetriesneed to integrateto 1-parametersubgroupsof C.

Thus,the Lie algebrag of G is a Lie subalgebraof the Lie algebraof infinitesimal
symmetries.Since elementsof C are diffeomorphismsof V, we denotethem by

g~to distinguishthem from theinduceddiffeomorphismsof otherspaces.Howe-
ver, we can considerG as a abstractgroupacting in variousspaces.In this case

elementsof C will be denotedby g, and~ g~,and will denotethe actionof
g in X, V, and Z, respectively.Similarly, if there is no confusionpossible,ele-

ments of g, treated as an abstractLie algebra,will be denotedby si~igleletters,
e.g. E, and ~ ~,, and will denotethe correspondingfundamentalvector

fields in X, V, andZ, respectively.

The relationship between infinitesimal symmetriesand conservationlaws is
given by the First NoetherTheorem.Let U be a relativalycompactdomain in X

with boundaryexpressibleas a differenceof two hypersurfacess1 ands2,

U=s2 —s1.

If, ~is aninfinitesimal symmetrythen,

~z~dc2 =—d(E~
1~Q)

and, for eachsection5~)~: U -÷ Z of p~satisfyingthe DeDonder-Cartanequa-
tions,wehave

fszx*(EzJ~) f5zxzJ~

A symmetry g E G will be called a gaugesymmetryif, for every pair of open
sets U and U’ in X with disjoint closures,thereexistsa symmetryg’ E C such
that

g’(y)=g(y) forevery yEp~,1(U),

g’(y)=y forevery yEp~~’(U’).

The gaugesymmetriesform a normal subgroupof G, which we denoteby H.

The Lie algebraof H will bedenotedby h.
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The notion of gaugesymmetriesgiven aboveagreeswith the commonlyaccept-

ed notion of gaugesymmetriesin gaugetheories.In generalrelativity, the group
of diffeomorphismsof the space-timemanifold satisfies our conditions for
gaugesymmetries.

Let U be an open set in X boundedby two surfacess
1 ands2. The Second

Noether Theorem implies that, for eachsection ~ with domain U satisfying
the DeDonder-Cartanequations,the constantsof motion correspondingto all
infinitesimal gauge symmetries,such that the intersectionsof their supports

with s1 and s2 can be separatedby opensets,haveto vanish.This consequence
of the SecondNoetherTheoremis the main sourceof constraintsin gaugefield
theoriesandgeneralrelativity. -

6. PRIMARY CONSTRAINTS

Let M be an oriented 3-dimensionalmanifold representinga typical Cauchy

surface. A parametrizedCauchysurfacein X is an embeddings of M into X.
Let S be a submanifold of the spaceof embeddingsof M into X such that

g~sE S for eachs E S and eachg E C. It is the spaceof parametrizedCauchy
surfaceswe are going to admit in our canonicalformulation of field dynamics.

Let Q denote the spaceof embeddingsq :M —÷ V such that P~~qis in S.
An embeddingq in Q representsDirichlet data on the parametrizedCauchy

surfaces = ~ that is q describesthe values of the dynamical fields on the

Cauchysurfaces(M). Q is a submanifoldof the manifold of smoothmapsfrom
M to V. It is fibered overS with the projectionmap~SQ: Q -+ Sgiven by

PsQ(q)= Pxyq

for every q in Q. The spaceQ is the field theoryanalogueof the configuration
space-timeof the Newtoniandynamics.

Let V denotethe spaceof embeddingsv :M -*Z, such that p1,~uis contained

in Q and thereexistsa local section~ of suchthat

V =jS~~p~~V.

The space V is the spaceof <<virtual>> Cauchy data for the DeDonder-Cartan
equationsof the field theory underconsideration.In the presenceof constraints

the actual Cauchydata, that is the Cauchydata of solutionsof the Hamilton-

-Cartanequationsform a proper subsetC of V. Wedenoteb~PQ~ the projection
from V to Q given by PQv(L) = p~2~-’,and by p~,: V -+ 5 the compositionof

PQV and~SQ’ ~ = ~sQ~Qv~For eachs in 5, the fibre of Voversis the space
of <virtual>> Cauchydataon the Cauchysurfaces(M).

The Legendretransformationis a mapping L : V —* (Ker TPSQ)* defined as
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follows. For eachq EQ, eachv E J’~=PQV~(q),andeachvectorE EKerqTp
50,

(L (V), ~)

where E’ is the vectorfield on Z, definedon V(M), such that ~ = E’v. The image
Pof the LegendretransformationL,

F= L(V),

is the primary constraintbundle of the theory. For eachs ES, P~=L(J’) is the

primary constraintmanifold correspondingto the Cauchysurfaces.
In sufficiently regular field theories, e.g. general relativity and Yang-Mills

theory, the projection map~ from V to P induced by L is a submersion,the
cotangent bundle projection T*Q -+ Q induces a fibration PQp : P —- Q, and

thereexistsa unique 1 -form 0 on P suchthat,for every V E V andevery~E 7~V,

(ppv*O, ~)=

where ~‘ is the vector field on Z, definedon V(M), suchthat ~ = ~‘v. For each

sES, the fibre of (Ker TpSQ)* overs is canonicallyisomorphic to T*Q5, where

Q5 =P~~’(~ The pull back 0~of 0 to P~coincideswith the pull back to P~
of the canonical 1-form of the cotangentbundle T*Q5 by the inclusion map

P~-~ T’~’Q~.
For eachopen set U in X, we denoteby U5 the subsetof S consistingof all

5 ESsuchthats(M) is containedin U. Eachlocal sections~ of ~ with domain

U gives rise to a section~ of p,~,,= PSQPQPwith domain U,~suchthat, for each
5 E U5,

= L(/S~~S).

SupposeU~is open and non-empty.Then a section~ over U satisfiesthe

DeDonder-Cartanequationsif andonly if, for eachvectorfield ~onF,

sps*(~Hd0)= 0,

Thus, we havearrived at a formulation of dynamicsof classicalfields analogous

to the Hamilton-Cartanformulationof timedependentdynamics.
In thereare no constraintsin the theory andall theinfinite dimensionalmani-

folds aresuitablychosen,thenP = (Ker TPSQ)*,and

Kerd0={~ETPI~
1d0=0}
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is an integrabledistribution on P transverseto the fibres of ~ In the presence
of constraints

N=KerdO flKerTp~~

doesnot vanish.For sufficiently regulartheories,e.g. generalrelativity andYang-
-Mills theory, N is an integrabledistribution on P and the spaceR of integral

manifolds of N is a quotientmanifold of P. There is a unique closed2-form
w on R suchthat

dO =PRp*w~

where P -+ R is the canonical projection. R is the reducedphasebundle
of the primary constraint bundleP. It is fibred over S by a map ~SR suchthat

~SR ~RP = P
5p~Foreachs E S, the pull back w5of w to the fibreR~is a symplec-

tic form. (R5, w~)is the reducedphasespacecorrespondingto the Cauchysurface
S.

For a physically importantclassof field theoreis,which includesgeneralrelati-
vity and Yang-Mills theory, thereis a canonically definedbundle A overS. with
the projection mapp~,such that the primary constraintbundlehasa canonical

productstructureoverS(Whitneysum),

PR x5A.

This product structureis stable underthe action of the group G of symmetries
of the theory. A is called the atlasbundleof the theory. For eachsES,elements
of A~= ~5A

1(s) are called atlas fields on the Cauchysurfaces. The subgroup
of the gaugegroupH stabilisings actstransitively onA~= ~ i(s).
We denoteby ~AF : P —* A the projection defined by the product structure.

For eacha EA, the fibre P
11 = pAP

1(a) is diffeomorphic to R
5, wheres= pSA(a),

and it inherits from R~its symplectic form w~.Thus,F hasa structureof a sym-
plectio f~bration.The closedform do, estendingthe family of symplectic forms
on the fibres, definesa distribution hor TP in TP transverseto definedby

hor TP={E E TP(i7 E Ker TpAp=)(~~d0,r~)= 0}.

It is a connectionon Pconsideredas a fibre bundleoverA, [11].

7. HAMILTONIAN DYNAMICS

Let c5: R -÷Sbe a curve in S. For each t ER and eachmM, we denoteby
(c5(t), m) the point in X associatedto ~n by the embeddingc~(t).The curve

definesa 3 + I splitting of the space-timeX if the mappingfrom R xM to X,

associatingto each(t, m) the point (C5(t), m)is a diffeomorphism.If CQ is a curve
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in Q such that c~= P5QCQ definesa 3 + 1 splitting of the spacetimemanifoldX,

then it defines a section~ of p1k,such taht (cQ(t)~m) = s~~((c~(t),m)). We

want to determinethe conditionsfor curves c~in P which guaranteethat the
section s~ determinesby CQ = PQpCp satisfies the Euler-Lagrangeequations

providedc5 = p5~11~definesa 3 + 1 splittingof thespace-time.
The constructiongiven in the precedingsection is invariantunderthesymme-

try group G of thetheory.Hence,C actsinS, Q, V,P,R, andA, intertwiningthe
projectionmapsandpreservingthe form 0 in F,

g~*O= 0,

for eachg E G, wheregp denotesthe diffeomorphismof Pinducedby g. Similarly,
infinitesimal symmetriesgive rise to vectorfields in the spaceS, Q, V, F, R, and
A, relatedby the projection maps and, for every infinitesimal symmetry E, the

correspondingvectorfield on P preserves0,

£~0 = 0,
cP

which is equivalentto

~~
1dO=—d(O,~~).

Themappingf~:P~+g*suchthat, for everyp EPandevery ~Eg*,

(JG(P), ~) = (0, ,(p)),

intertwines the action of G in F and the co-adjoint action of G in g*. Hence,
it is a momentum mapping correspondingto the action of G in F. For each

a EA, the stability group G
11 of a hasa Hamiltonian action in the fibre P11 with

the momentummapJi,~: ~D _~g* given by

(f11(p), ~) = (0, ,(p)),

for everyp ER0, and every ~Eg11.
Let ~ be an infinitesimal symmetry, and and the correspondingvector

fields in Z and V, respectively. For each v E V, E~(V) = EzV. Moreover,

~p(Ppv(V)) = TP~~(~v(V)).Taking into accountthe expressionfor the Legendre
transformation,we see that (Jp~,Q~)),~) is the value on v of the conserved
quantityassociatedto ~by theFirst NoetherTheorem.

Let j11 : P -+ h* be a momentum mapping correspondingto the action in F
of thegaugegroupH,

(JH(P), ~) = (0, ,(p)),

for every ~ E h and every p EP. The SecondNeotherTheoremshows that a
necessarycondition for virtual CauchydataV V to admit a finite time evolutionis
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the vanishingof fH(pFv(V)). This condition is also sufficientfor generalrelativity
and the Yang-Mills theory. For thesetheories,the final constraintin P is given
by the zero level of the momentum map correspondingto the action of the

gaugegroupH,

p~~(C)=f
11’(0),

where C is the subspaceof V consistingof the Cauchydatawhich admit a finite

timeevolution.
For the class of theories satisfying all the assumptionsmadehere we have

the following result. Let ~ be an infinitesimal symmetry,~ the corresponding
vectorfield on F, hor the horizontal componentof ~, relativeto the connec-

tion H defined in the precedingsection,c’,,, an integral curve of hor suchthat
its projection to S definesa 3 + 1 splitting of space-time,ands~ thesection
definedby CQ = PQpCp.

I. If, for some t0, Cp(to)EfH 1(0) then C~(t)Ef~’(0)for all t, and the
sections~satisfiesEuler-Lagrangeequations.

II. For each a E A, the restriction to of the vertical componentver of
is the Hamiltonianvectorfield of(0, ~,) restrictedto

Thus, in order to find solutions of the Euler-Lagrangeequationswe needto
choosean infinitesimal symmetry ~ such that an integralcurve of defines
a 3 + 1 splitting of space-time,lift to an integral curve CA of ~A and, for

each a in CA (R), find the Hamiltonian vector field in of the restriction of
(0, ~) to This gives ver restrictedto ~AP (CA(.Rfl. The integralcurvesof
hor ~,= ~~—ver ~, containedin p~~’(C~(R))and passingthrough points in
J~1(0) give rise to solutions~ of Euler-Lagrangeequations.This is anintrinsic
versionof theadjoint formalism usedin [I].
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Chapter 3

QUANTIZATION OF GAUGE ThEORIES

In the preceding lecture we obtained,for a certain class of field theories,
a Hamiltonian formulation of dynamicswhich is covariantrelative to the group
G of symmetriesof the underlying Lagrangiantheory. In this formulation, the
evolution takes place in the primary constraint bundle P fibered over the atlas

bundle A. The fibration ~AP :P-÷Ais symplectic,andthereis an exact 2-form
dO on P extendingthe family of symplectic forms alongthe fibreswhichdefines
a connectionhor TP. The group G actsin P by structurepreservingdiffeomor-

phisms.Themapping~G : P -+ g* given,for everyp EF and~Eg, by

~ ~) = (0,E~(p)),

intertwinesthe actionsof C in P and in g*• For each~Eg, the evolutionin the

direction is given the vectorfield

hor = — ver

where ver is the hamiltonianvectorfield of themomentum

J~(O,~p)
corresponding to ~ more precisely, for eacha EA, the restriction of ver
to the fibre P is the Hamiltonianvectorfield of (0, ~) restrictedtoR0. Sections
3YX of p~definedby integralcurves of hor ~ whichare containedin the zero
level of the momentummap ~H’ correspondingto the action in P of the gauge
groupH, satisfy Euler-Lagrangeequations.Conversely,every sections~,

1satisfy-

ing Euler-Lagrangeequationsgives rise to an integral curve of hor ~, contained

in ~H ‘(0).

8. SELECTION RULES DUE TO GAUGE INVARIANCE

In the formulation of dynamicsoutlinedabovethe groupC of symmetriesof

the Lagrangiantheory and its normal subgroupH of gaugesymmetriesplay
fundamentalroles. The dynamics is given by the Hamiltonian vector fields of

the momentumfunctions correspondingto elementsof the Lie algebrag of C.

The constraintsare given by the vanishing of the momentum functions cor-
respondingto the elementsof the Lie algebrah of the gaugegroupH. Hence,the
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first step in a quantizationof the systemdescribedaboveshouldleadto a repre-

sentationof the symmetrygroupG. This would give rise to a unitary representa-
tion of thegaugegroupH.

A unitary representationof a locally compactLie groupcanbe decomposed
into its irreducible components.The representationspacecan be expressedas

a direct integral over the space of irreducible unitary representationsof the
group.

H =fH~d~~~

where dsi~is a measureon the spaceof irreducibleunitary representations,and

is the representationspaceof a representationp. Vectors in H are given as
functions associatingto eachp a vector 1,11(p) in H~suchthat the function I ~(P)V

is integrablewith respect to the measuredi~.The scalarproductof iJi and x in

H is given by

x=fPIxPPd~~.

For eachelementg of the group,the action of the unitary operatorU(g) on 1,1’

in H is given by

(U(g)IJi)(p) = U~(g)~(p),

whereg -+ U (g) is the unitary representationp of thegroupin H~.
The gaugegroup H is not locally compact,andwe cannotguaranteethat its

unitary representationobtained by field quantization decomposesas direct

integral of irreducible unitary representations.However, if this were the case,
the probability of transitionbetweenthe statescorrespondingto different irredu-

cible representationsof H would vanish. Moreover, the classicaldynamicalvaria-

bles are componentsof the equivariantmementummapping~ Given ~in g, we
denoteby ~ the quantumoperatorin H correspondingto the momentum.J~.
SinceH is a normalsubgroupof G it follows that,for each1? E h,

[J~,J~] =J[~~]Eh.

Therefore,therewould exist a family ~ Of operatorsin H~suchthat, for each
1,11 in H, and eachp,

~ 1,&)(p) = ~ 4~(p).

In the situation describedabove,for eachp, the evolutionof the statestran-
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sforming under the gaugegroup H accordingto the representationp would be
given by an operator QJ1~,for an appropriateinfinitesimal symmetry E~and

therewould be no interactionbetweenstatescorrespondingto different irreduci-

ble representations.If the experimentaldata indicatedthat only the statescor-
respondingto some irreducible representationsp were realized in nature,we
could restrictour considerationsto the correspondingspaces~ without violat-

ing the invarianceof the theoryunderthegroup C of symmetriesof the underly-
ing classicaltheory.

All the facts mentionedabove are well known from the study of symmetry

groups in quantum physics. The gaugegroupsof field theorydiffer from sym-
metry groups in quantum mechanicsby their localizability in the spacetime

which leads,via the SecondNoetherTheorem,to constraintsgiven by the vanish-
ing of the corresponding momentum map. Incorporation into the quantum

theory of the classicalconstraintcondition = 0 is the next step in quantiza-
tion of gaugetheories;it will be discussedin following section.

9. DIRAC’S QUANTIZATION OF CONSTRAINTS

In 1950 P.A.M. Dirac proposeda quantum implementationof the classical
constraintcondition = 0, requiringthat the physically admissiblestatesshould
be joint eigenstatesof the operatorsQf~,for all ~Eh, correspondingto the

eigenvalue0. Since the operators~ for ~Eh, generatethe actionof H in the
representationspace,Dirac’s conditionis equivalentto the requirementthat the
physically admissiblestatesshouldbe gaugeinvariant. This interpretationof the

Dirac’s theory of quantizationof constraintsis supportedby the relationship

betweenorbitsandrepresentationsdiscussedin Lecture 1.
If 0 is not in the discretespectrumof the operators~ for ~Eli, then the

gaugeinvariant Stateswill not be normalizable.This is thereasonfor thecontra-
diction encounteredin [4]. In this casethe spaceof physically admissiblestates
consistsof generalizedeigenvectorsof the operators~ definedas follows. Let

H denote the subspaceof H which is the common domain for the universal
envelopingalgebra of h. That is ~11E H if and only if, for each E Eli, and each

positive integern, (QJ~Y~is definedon ~,1i. The topology in H’~is definedby the
systemof seminormsI i,1i IE,n = I (QJ1)” ~ I~Let H~ denote the space of conti-
nuouslinear functionalson H ~. The representationof C in H estendsto a repre-

sentationin H ~ for each ~Eg, and each 4 E t{~, the action of QJ~on ~ is

definedby

(QJ,4~,~
for each i,1i E H ‘~. The spaceof physically admissiblestates is the subspaceof
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consistingof H invariantelements.
It shouldbenotedthat the scalarproductin H neednot inducea scalarproduct

in the spaceof physically admissiblestates,and one will have to determine
independentlythe scalar product in the space of physically admissible. This
situation is common in physics. For example, the Klein-Gordon operator is
selfadjoint in the spaceof squareintegrablefunctionson the spacetime.Howe-
ver, solutionsof the Klein-Gordonequationare not squareintegrable,and their

scalarproductinvolvesonly integrationover spatialvariables.
It is possible that the approachto quantizationof gaugeinvariant theories

might be helpfull in understandingthe phenomenonof confinementof quarks
and gluons in quantumchromodynamicsand the spontaneoussymmetry in the
Salam Weinberg model. However, a conclusive test of applicability of this ap-
proachto physics of elementaryparticleswould be a constructionof quantum

chromodynamicsalong the lines discussedhere, including a gauge invariant
approximationmethodallowing for quantitative predictions. This is a rahter
tall order, and at presentwe have to rely on indirect evidenceprovided by a

qualitative analysisof the theory,and a quantitativeanalysisof simplified models.
A convenientfinite dimensionalmodel of Yang-Mills theory is provided by

SU(2) invariant Yang-Mills fields on the compactificationU(l) x SU(2) of the
Minkowski space.In this model theconfigurationspaceconsistsof 3 x 3 matrices,

and the symmetry group is the productof SO(3)with itself, C = 80(3) xS0(3).

For each matrix A and each g = (L, R) E G, gA = LAR’. The Yang-Mills
Lagrangian,restrictedto SU(2) invariant fields, leadsto constrainedHamiltonian
dynamicswith a HamiltonianH and the constraintsgiven by thevanishingof the

momentummap correspondingto the action of S0(3) given by the left multipli-

cation.Thus,H = S0(3) x I plays the role of the gaugegroup, [14].
Schroedingerquantizationof this model leadsto a unitary representationof

G in the spaceH of squareintegrablefunctions 1,11(A). Thisrepresentationcanbe
decomposedinto a direct sumof irreduciblerepresentationsof H. In particular,a

wave function ‘~,1i(A)belongs to a trivial representationof H if and only if it
dependsonly of ATA. ThequantumHamiltonianQH is given by

QH = [(—1/2)h2A + V(A)],

where the potentialenergyterm Vis a quarticpolynomial in A tendingto infinity
as IA I tendsto infinity. Hence,QH hasa discretespectrum,and the spaceof H

invariant statesis spannedby eigenvectorsof QH. Moreover,theground stateof

QH is non-degenerate.
It is of interest to enlarge the model by includinga Higgs field and study if

there is a possibility of a spontaneoussymmetry breakingin the resulting quan-

tum theory.
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